

Introduction of Measurement and Control LAB

School of Mechanical Engineering, Pusan National University

Prof. Min Cheol Lee

Email: mclee@pusan.ac.kr Home page: http://mclab.me.pusan.ac.kr ME Building(#303) Room No 819

Min Cheol Lee, Prof., School of Mechanical Eng., Pusan National University

Ph. D. , University of Tsukuba, Applied Physics, Robot Control, 1991
Lab Name : MCLAB (Measurement and Control Laboratory) founded in 1991
Major: Robot Control, Mechatronics, Medical Robotics, Field Robot, Intelligent Robot

- 4 Assignment in present
- Development of Robot Manipulation Technology by Using Artificial Intelligence
- Development of Virtual Dismantling System Using ICT
- PLCopen Standard Based Robot Kinematic Analysis for Motion Control
- The development of high skilled and innovative manpower to lead the Innovation based on Robot

- Human source production: 117
 - Master: 100
- master: 100
- Doctor: 17
- (2022.1. present)
- International Journal 63(SCI(E) 56) Domestic Journal 75,
- International symposium 252, Domestic symposium 236, Patent 18

On – Going Research Progress

Final Development Goals

- Develop virtual system to dismantle Reactor Vessel Internals (RVI).
- 5+1 DOF robot manipulator along with xy-crane will use to dismantle RVI with cutting tools.
- Master system (real world) will control this slave system (Virtual system).

Final Development Goals

- Develop TwinCAT based system to remotely dismantle Reactor Vessel Internals (RVI).
- 6 DOF robot manipulator will use to dismantle RVI with laser cutting tools.
- Master system (real world) will control this virtual and real slave system

d: Prismatic joint displacement

- F: End-effector force feedback
- C_d : Communication delay

- θ : Joint angles
- f_e : Environment (Contact) force

Near Past Research Achievements

Final Development Goals

- Development of artificial intelligence(AI) based object recognition, gripping and manipulation technology using dual arm system
- Development of Al-based teaching, assembly and control technology for manufacturing robot (dual arm robot) and service robot (agricultural, medical and rehabilitation)

Product Definition

Main Contribution

SCARA, DELTA, Gantry, Articulated Robot Inverse / Forward kinematics appliance

Trajectory Planning

 Calculate the trajectory with route of start point – waypoint – end point by sampling time

Forward / Inverse Kinematics

- Calculating the rotation of each joints with Inverse Jacobian method within sampling
- Solving the singularity in articulated robot

Measurement & Control Lab.

IT convergence exercise treadmill system for a cardiac rehabilitation

Desire Heartrate tracking

Measurement & Control Lab.

Pusan National University

Cutting technology and remote control technology-based nonlinear model of the molten salt

Using remote cutting edge of technology, and the molten salt concept of source dissolution